Available online at <u>www.ijpab.com</u>

DOI: http://dx.doi.org/10.18782/2582-2845.9103

ISSN: 2582 – 2845 *Ind. J. Pure App. Biosci.* (2024) *12*(5), 20-27

Research Article

Peer-Reviewed, Refereed, Open Access Journal

Evaluating Grass Diversity and Conservation Approaches in Binsar WLS, Kumaun Himalaya, India

Kuntal Saha¹, Manoj Chandran², Amit Singh Bisht³, Nasrin Parvin⁴, Ranjana Negi³*

¹Department of Botany, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India ²Indian Forest Service, Uttarakhand Forest Department, Dehradun, Uttarakhand 248001, India ³Systematic Botany Discipline, Forest Botany Division, Forest Research Institute (FRI), Dehradun, Uttarakhand 248006, India ⁴Applied & molecular mycology & plant pathology laboratory, Department of Botany, The University of

Burdwan, Bardhaman, 713104, West Bengal, India *Corresponding Author E-mail: ranjananegi.icfre@gmail.com Received: 15.07.2024 | Revised: 23.09.2024 | Accepted: 10.10.2024

ABSTRACT

In this study, we present an annotated checklist of the grass flora, detailing life forms, distribution status, and IUCN status, in a ~48 sq. km area in the Almora and Bageshwar district of Uttarakhand, part of the Western Himalayan Region. We recorded 66 grass taxa, representing 46 genera across 14 tribes and 5 subfamilies. Dominant genera throughout the seasons include Apluda, Arundinella, Oplismenus, and Sporobolus. Cenchrus and Poa, particularly P. annua, are prevalent in the post-monsoon period. The study also identifies several threats to the survival of grasses in the wildlife sanctuary, such as habitat loss, over-tourism, urbanization, overgrazing, and the invasion of exotic plant species. Additionally, it highlights the socio-economic uses of the recorded grass species.

Keywords: Biodiversity, Checklist, Poaceae, Uttarakhand, Western Himalayas.

INTRODUCTION

Grasses are a widespread and diverse group of flowering plants crucial to global ecosystems (Odedra et al., 2024). They cover approximately 20% of the Earth's land surface, making them ecological dominants (Hussain et al., 2019). India has the third-highest diversity of grass species, following Brazil and the USSR. It is estimated that more than 15,000 species of angiosperms and gymnosperms occur in India, with about one-third being woody species (Jain & Rao, 1983). The Indian Himalayan region, recognized as one of the world's biodiversity hotspots, features unique ecosystems in the Western Himalayas, supporting numerous endemic and rare plant species. Binsar Wildlife Sanctuary, situated in the foothills of the Himalayas in Uttarakhand's Almora district, exemplifies these unique ecosystems.

Cite this article: Saha, K., Chandran, M., Bisht, A. S., Parvin, N., & Negi, R. (2024). Evaluating Grass Diversity And Conservation Approaches in Binsar WLS, Kumaun Himalaya, India, *Ind. J. Pure App. Biosci.* 12(5), 20-27. doi: http://dx.doi.org/10.18782/2582-2845.9103

This article is published under the terms of the Creative Commons Attribution License 4.0.

Saha et al.

ISSN: 2582 - 2845

It is characterized by wild medicinal plants Bergenia ciliate and Trifolium repens and dominant tree species such as Aesculus indica, Alnus nepalensis, Myrica esculenta, Pinus roxburghii, Pyrus pashia, Quercus leucotrichophora, and Rhododendron arboretum.

The wildlife sanctuary is situated between 29°38'N to 29°45'N and 79°20'E to 79°40'E in the Almora and Bageshwar districts of Uttarakhand (Fig. 1), covering an area of 47.07 sq. km. The altitude ranges from 900 to 2500 meters, with an average elevation of 2420 meters. Established in 1988 to conserve the region's rich biodiversity, the Sanctuary is home to over 200 species of birds, including the Eurasian jay, koklass pheasant, monal pheasant, and Himalayan woodpecker. Locals believe Binsar was named after the Bineshwar Mahadev temple, a 16th-century temple dedicated to Lord Shiva. Additionally, Binsar was the summer capital of the Chand Dynasty rulers, who governed Kumaon from the 7th to 18th century AD. The peak point, known as Jhandi Dhar or Zero Point, is at an elevation of 2412 meters.

In the early work, 1927 Forest Flora for Kumaon (1927), by A.E. Osmaston's primarily concentrated on tree species. In 1960, N.L. Bor's The Grasses of Burma, Ceylon, India, and Pakistan contributed further to grass diversity studies. More recent studies (Ilvas & Khan, 2005; Majila & Kala, 2010; Rawat et al., 2013; Khan & Arya, 2017) have explored various aspects, including forest vegetation, regeneration, and conservation. However, Binsar Wildlife Sanctuary has received minimal attention in these works and is only known through sporadic reports, lacking a systematic checklist of its grass diversity. This grass diversity holds significant ecological value and is integral to local communities' traditional customs, rituals, and livelihoods. This study aims to fill the knowledge gap regarding the biodiversity of Binsar by focusing on the grass flora found in Binsar Wildlife Sanctuary.

MATERIALS AND METHODS

The study area was explored from August 2023 to May 2024, covering all zones: the

Core zone (4 km²), the Tourism zone (including the motor road compartments, Zero point, and forest rest house areas), the Buffer zone (including the two entry gates at Ayarpani and Dhaulchina), and the Ecodevelopment zone (including the boundary, surrounding villages to understand the uses of grasses by local people). Frequent field trips were organized to collect plant specimens during their flowering and fruiting stages, aiming to comprehensively understand the grass flora and ensure maximum species diversity was sampled. Plant specimens were collected and identified using various taxonomic literature, including Bor (1960), Gaur (1999) and Chen et al. (2006). The collected grass specimens have been submitted to the herbarium at the Forest Research Institute, Dehradun (DD).

RESULT AND DISCUSSION

During our surveys, we explored various sites within the Sanctuary to study the life cycle patterns of plant species and documented the socio-economic uses of grass species by the local villagers (Fig. 2). Our primary objective was to thoroughly assess the diversity of each grass species, including those that might be endemic or rare. This detailed analysis underscores the rich grass diversity within Binsar Wildlife Sanctuary, highlighting the representation of various taxa and offering valuable insights for setting conservation priorities (Table 1).

We recorded 66 species from 45 genera, spanning 14 tribes and 5 subfamilies (Table 2). To better understand their presence and distribution within the Sanctuary, the grass species were categorized as very common, common, uncommon, or rare (Table 3). From a conservation perspective, 13 species were identified as Least Concern (LC) according to the IUCN Red List. Additionally, our study documented the presence of *Sehima notata* and *Microstegium falconeri*, both of which are endemic to the North-West Himalayas (Singh et al., 2015; Pusalkar & Srivastava, 2018; Rawat et al., 2022).

Ind. J. Pure App. Biosci. (2024) 12(5), 20-27

Table1. List of Grass Species in Binsar Wildlife Sanctuary

Serial No	Таха	Lifespan	Uses	Distribution status	IUCN status
1.	Agrostis pilosula Trin.	Annual	Fodder	Common	-
2.	Agrostis stolonifera L.	Perennial	-	Uncommon	LC (2013)
3.	Anthoxanthum odoratum L.	Perennial	-	Uncommon	-
4.	Apluda mutica L.	Perennial	Fodder, thatching	Very common	-
5.	Arthraxon lancifolius (Trin.) Hochst.	Annual	-	Common	-
6.	Arthraxon nudus (Steud.) Hochst.	Annual	-	Common	-
7	Arundinella hengalensis (Spreng) Druce	Perennial	-	Uncommon	-
8.	Arundinella nepalensis Trin.	Perennial	Thatching	Common	LC (2020)
9	Arundinella numila (Hochst ex A Rich)	Annual	Fodder	Common	-
	Steud.	1 11110001	rouder	Common	
10.	Bothriochlog bladhii (Retz.) S.T.Blake	Perennial	-	Uncommon	-
11	Brachypodium pinnatum (L.) P Beaux	Perennial	-	Common	-
12	Bromus catharticus Vahl	Perennial	Fodder	Very common	-
13	Capillinedium assimile (Steud.) A Camus	Perennial	-	Common	-
14	Capillipedium parviflorum (B Br.) Stapf	Perennial	Fodder	Common	-
15	Cenchrus americanus (L.) Morrone	Annual	-	Common	-
16	Cenchrus flaccidus (Griseb) Morrone	Perennial	Fodder	Common	_
17	Cenchrus orientalis (Rich) Morrone	Perennial	Fodder	Very Common	_
18	Cenchrus purpureus (Schumach)	Perennial	-	Common	-
10.	Morrone	reiennar	_	Common	_
19	Chrysopogon fulyus (Spreng) Chioy	Perennial	_	Common	_
20	Chrysopogon gryllus (L) Trip	Perennial		Common	_
20.	Cymbonogon distans (Nees ex Steud)	Perennial		Uncommon	-
21.	Will Watson	reicinnai	-	Cheolinion	-
22	Cymbonogon iwarancusa (Iones ex	Perennial		Common	_
22.	Roxh) Schult	reichnar	_	Common	_
23	Cynodon dactylon (L.) Pers	Perennial	Fodder sacred	Very Common	-
25.	Cynodon ddelyton (E.) i ers.	reichnur	rituals	very common	
24	Dichanthium annulatum (Forssk) Stanf	Perennial	Fodder	Common	-
25	Digitaria ciliaris (Retz.) Koeler	Annual	-	Uncommon	_
25.	Digitaria cruciata (Nees ex Stend)	Annual	_	Common	_
20.	E G Camus & A Camus	7 tinuar	_	Common	_
27	Drepanostachyum falcatum (Nees) Keng	Woody	_	Uncommon	-
27.	f	perennial		Cheommon	
28	Echinochlog colong (L.) Link	Annual	Grains edible	Uncommon	LC (2020)
29	Echinochloa colonum subsp. edulis	Annual	Fodder	Common	LC (2018)
29.	(Honda) Banfi & Galasso	Annual	rouder	Common	LC (2018)
30	Eleusine coracana (L.) Gaertn	Annual	_	Common	_
31	Eleusine indica (L.) Gaertn	Annual	Fodder	Common	LC (2011)
32	Elvmus semicostatus (Stend.) Melderis	Perennial	-	Uncommon	-
33	Eragrostis nigra Nees ex Steud	Perennial	_	Very Common	_
34	Eulalia mollis (Griseb) Kuntze	Perennial	_	Rare	_
35	<i>Eulalionsis hinata</i> (Retz.) C E Hubb	Perennial	-	Common	-
36	Eastuca myuros L	Annual	_	Common	_
30.	Festuca rubra I	Perennial	_	Common	_
38	Hataronogon contartus (I.) P. Beguy, ex	Perennial	_	Common	-
56.	Roem & Schult	reicinnai	-	Common	-
30	Imparata cylindrica (L.) Paeusch	Derennial		Very common	LC (2010)
39. 40	Imperata Cytinarica (E.) Racuscii.	Perennial	-	Uncommon	LC (2011)
40.	Koglerig macrantha (Ledeb.) Schult	Perennial	_	Common	LC (2011)
41.	Lolium aigantaum (L.) Darbysh	Perennial	-	Common	-
42.	Loitum gigunieum (L.) Daibysii.	Appuol	-	Uncommon	-
43.	Microstegium juiconert (Hook.1.) Clayton	Annual	-	Uncommon	-
44.	Microstegium nuaum (TTIII.) A.Calilus	Poronniol	-	Common	-
43.	Muscaninas nepatensis (1111.) Hack.	Perennial	-	Lasommon	-
40.	Munienbergia mmaiayensis Hack. ex	Pereninai	-	Uncommon	-
47	Hook.i.	A mmu o 1	Foddar	Vanu aannaa	
47.	Oplismenus burmanni (Retz.) P.Beauv.	Annual	Fodder	Very common	- L C (2021)
48.	Oplismenus compositus (L.) P.Beauv.	Annual	-	very common	LC (2021)
49.		Perennial	-	Uncommon	-
50.	Phacelurus speciosus (Steud.) C.E.Hubb.	Perennial	-	Rare	-
51.	Phalaris minor Retz.	Annual	Fodder	uncommon	
52.	Piptatherum aequiglume (Duthie ex	Perennial	-	Uncommon	-
	Hook.t.) Roshev.		D (1	**	
53.	Poa annua L.	Annual	Fodder	Very common	LC (2013)
54.	Poa pratensis L.	Perennial	-	Common	LC (2016)
55.	Poa sterilis M.Bieb.	Perennial	-	Rare	-
56.	Polypogon monspeliensis (L.) Desf.	Annual	-	Uncommon	LC (2014)
57.	Saccharum spontaneum L.	Perennial	-	Common	LC (2020)
58.	Sehima notata (Hack.) A.Camus	Perennial	-	Rare	-
59.	Sorghum halepense (L.) Pers.	Perennial	Fodder	Common	-
60.	Sporobolus diandrus (Retz.) P.Beauv.	Perennial	-	Very common	-

Se	aha et al.	Ind. J. Pure App. Biosci. (2024) 12(5), 20-27			ISS	N: 2582 – 284:
	61.	Sporobolus indicus (L.) R.Br.	Perennial	Fodder	Common	LC (2021)
	62.	Sporobolus piliferus (Trin.) Kunth	Annual	Fodder	Uncommon	-
	63.	Themeda anathera (Nees ex Steud.)	Perennial	-	Very common	-
		Hack.				
	64.	Thysanolaena latifolia (Roxb. ex	Perennial	Fodder, broom	Very common	-
		Hornem.) Honda		grass		
	65.	Tripidium bengalense (Retz.) H.Scholz	Perennial	-	Common	-
	66	Tripogon filiformis Nees ex Steud	Perennial	_	Very common	-

Table2. Analytical Study of Grass Species in Binsar Wildlife Sanctuary

Serial	Sub- family	Tribe	Genera & no of species	
No				
1.	Bambusoideae	Arundinarieae	Drepanostachyum (1).	
2.	Pooideae	Poeae	Agrostis (2), Anthoxanthum (1), Festuca (2), Koeleria (1), Lolium (1),	
			Orthoraphium (1), Phalaris (1), Poa (3), Polypogon (1).	
		Brachypodieae	Brachypodium (1).	
		Bromeae	Bromus (1).	
		Triticeae	Elymus (1).	
		Stipeae	Orthoraphium (1), Piptatherum (2).	
3.	Panicoideae	Andropogoneae	Apluda (1), Arthraxon (1), Bothriochloa (1), Capillipedium (2),	
			Chrysopogon (2), Cymbopogon (2), Dichanthium (1), Eulalia (1),	
			Eulaliopsis (1), Heteropogon (1), Imperata (1), Microstegium (2),	
			Miscanthus (1), Phacelurus (1), Saccharum (1), Sehima (1), Sorghum	
			(1), <i>Themeda</i> (1), <i>Tripidium</i> (1).	
		Arundinelleae	Arundinelleae (3).	
		Paniceae	Cenchrus (4), Digitaria (2), Echinochloa (2), Oplismenus (1).	
		Thysanolaeneae	Thysanolaena (1).	
4.	Micrairoideae	Isachneae	Isachne (1).	
5.	Chloridoideae	Cynodonteae	Cynodon (1), Eleusine (2), Muhlenbergia (1), Tripogon (1).	
		Eragrostideae	Eragrostis (1).	
		Zoysieae	Sporobolus (3).	
Total	5	14	46 genera & 66 taxa.	

Table 3: Abundance of grass species asse	essed based on their occurrence
--	---------------------------------

Serial No.	Distribution patterns	No of taxa
1.	Very common	13
2.	Common	31
3.	Uncommon	18
4.	Rare	4

Figure 1: A) Represent the India map along the Uttarakhand. B) Map showing the location of Binsar Wildlife Sanctuary

Ind. J. Pure App. Biosci. (2024) 12(5), 20-27

ISSN: 2582 - 2845

Figure 2: A. Arthraxon nudus (Steud.) Hochst.; B. Echinochloa colonum subsp. edulis (Honda) Banfi & Galasso; C. Eulalia mollis (Griseb.) Kuntze; D. Isachne albens Trin.; E. Sporobolus piliferus (Trin.) Kunth; F. Phalaris minor Retz.; G. Saccharum spontaneum L.; H. A villager carrying grasses for fodder purposes

CONCLUSION

Binsar Wildlife Sanctuary, with its grass diversity largely unexplored, has unnoticeable biodiversity conservation and management strategies; protecting grass species in the Sanctuary is vital for ecological and cultural reasons, as well as for enhancing resilience, biodiversity, and sustainability in the face of ongoing environmental challenges. The decline in grass diversity and grasslands due to natural and human factors could have significant impacts (Majila, 1992). The comprehensive checklist of grass diversity provided serves as a valuable biodiversity data source for biological studies. It will aid in biodiversity conservation and management plans and in monitoring floristic changes as we progress into the Anthropocene in the 21st century.

Acknowledgements

The author expresses gratitude to Mr. Sumit Bisht, Technical Assistant, Systemic Botany Discipline, Forest Botany Division, Forest Research Institute, Dehradun, Uttarakhand, for the his support during field survey. Additionally, the first author acknowledges the financial assistance provided through a fellowship (UGC Ref No-211610009488/ Joint CSIR-UGC NET June 2021) from the University Grants Commission, New Delhi, India.

Funding: NIL.

Conflict of Interest:

There is no such evidence of conflict of interest.

Author Contribution

All authors have participated in critically revising of the entire manuscript and approval of the final manuscript.

REFERENCES

- Bor, N. L. (1960). *The Grasses of Burma, Ceylon, India and Pakistan*. Pergamon Press, London pp. 1 - 767.
- Chen, S., Li, D., Zhu, G., Wu, Z., Lu, S., Liu, L., Wang, Z., Sun, B., Zhu, Z., Xia, N., Jia, L., Guo, Z., Chen, W., Chen,

Copyright © Sept.-Oct., 2024; IJPAB

X., Yang, G., Phillips, S. M.,
Stapleton, C., Soreng, R. J., Aiken, S.
G., Tzvelev, N. N., Peterson, P. M.,
Renvoize, S. A., Olonova, M. V., &
Ammann, K. H. (2006). Poaceae; p. 1-651 *In* Wu, Z. Y., Raven, P. H., &
Hong, D. Y. (ed.). *Flora of China*.
Volume XII. St. Louis: Science Press,
Beijing, and Missouri Botanical
Garden Press.

- Gaur, R. D. (1999). Flora of the district Garhwal North West Himalaya (With ethnobotanical notes). TransMedia, Srinagar (Gahwal) pp. 636 - 700.
- Hussain, M., Khan, S. M., Abd_Allah, E. F., Ul Haq, Z., Alshahrani, T. S., Alqarawi, A. A., & Ahmad, H. (2019).
 Assessment of plant communities and identification of indicator species of an Ecotonal Forest zone at Durand Line, District Kurram, Pakistan. Applied Ecology & Environmental Research, 17(3).
- Ilyas, O., & Khan, J. A. (2005). Assessment of tree mortality and post fire regeneration pattern in Binsar Wildlife Sanctuary, Kumaon Himalaya. *Tropical Ecology*, 46(2), 157-164.
- IUCN (2024). The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org> accessed on 12.06.2023.
- Jain, S. K., & Rao, R. R. (1983). Assessment of threatened plants of India. In Seminar on Threatened Plants of India (1981: Dehradun, India). Botanical Survey of India, Dept. of Environment.
- Khan, A. H., & Arya, D. (2017). Analysis of forest vegetation in Binsar Wildlife Sanctuary, Kumaun Himalaya, Uttarakhand, India. American-Eurasian Journal of Agricultural & Environmental Sciences, 17(4), 336-342.
- Majila, B. S. (1992). Phytosociology, biomass structure and primary productivity of Oak-Pine forest of Kumaun Himalaya. *Ph. D. Thesis*.

- Majila, B. S., & Kala, C. P. (2010). Forest structure and regeneration along the altitudinal gradient in the Binsar Wildlife Sanctuary, Uttarakhand Himalaya, India. *Russian Journal of Ecology*, 41, 75-83.
- Odedra, K. N., Odedra, N. K., & Jadeja, B. A. (2024). Grass Flora of Porbandar District, Gujarat, India. *Proceedings of the National Academy of Sciences, India Section B: Biological Sciences,* 1-11.
- Pusalkar, P. K., Srivastava, S. K. (2018). Flora of Uttarakhand: Gymnosperms and Angiosperms (Ranunculaceae-Moringaceae), Howrah: Botanical Survey of India.
- Rawat, B., Negi, V. S., Mishra Rawat, J., Tewari, L. M., & Rawat, L. (2013). The potential contribution of wildlife sanctuary to forest conservation: a case study from Binsar Wildlife Sanctuary. *Journal of Mountain Science*, 10, 854-865.
- Rawat, D. S., Chandra, S., & Chaturvedi, P. (2022). Threatened flora of Uttarakhand: an update. *Journal of Threatened Taxa*, *14*(12), pp 22309– 22328.
- Singh, P., Karthigeyan, K., Lakshminarasimhan, P., & Dash, S. S. (2015). *Endemic vascular plants of India*. Botanical Survey of India.